
 - 1 - Version 0.9

PinKit Audio Board

The PinKit Audio Board plays back audio files from a MicroSD memory card to generate

high (near CD) quality audio. It is the audio generation board in the set of controller

boards that comprise the PinKit controller system. The audio board connects to the

PinCAN bus and processes sound commands. It mixes up to three tracks of digital audio

and converts it to high-quality stereo line-level outputs. A standard audio amplifier can

be used to amplify this to drive a set of speakers.

For details on the complete PinKit system, see http://pinkit.planetimming.com . While

this board is intended to be connected as part of a PinCAN system, the board has

dedicated switch inputs and an RS-232 interface option that allows it to be used as a

stand-alone audio board.

Actual board size is 3.8” x 2.5”

Features:

1. Three track audio with per-track volume control (music, voice, effects)

2. 31250 Hz audio sample rate

3. 4-bit ADPCM audio data storage. ITU G.721 Adaptive Pulse Code Modulation

algorithm based on the Interactive Multimedia Association’s reference algorithm

4. High-performance audio DAC (digital-to-analog converter)

5. High-performance audio filter, 23 KHz low-pass

6. Line out to external amplifier

7. Optional headphone output

8. MicroSD audio storage supporting FAT-16 or FAT-32 ; a 2GB MicroSD card

provides over 35 hours of audio.

9. Software controlled volume level

 - 2 - Version 0.9

10. RS-232 serial interface (115,200 baud, 8 data bits, no parity, 1 stop bit) for use as

a stand-along audio board

Block Diagram

The following figure shows a block level diagram of the PinKit audio board.

The CAN/IF block is the RJ45 connector and CAN transceiver that provides the

connection to the CAN bus that is used for system communication. The CAN bus

controller is onboard the PIC18F2580 processor. The CAN I/F and PIC18 is common to

all of the PinKit controllers. The output of the PIC18 is an RS-232 interface that controls

the sound portion of the audio card. Jumpers are provided to disconnect the CAN bus

logic so that RS-232 commands can be sent directly into the audio controller.

The PIC24F processor handles all of the audio processing; reading data from the

microSD card, decoding the ADPCM data stream, mixing the audio tracks, and

transmitting the I2S data to the audio DAC. Since the processor does not directly support

the I2S data format, the LR_Gen logic generates the Left/Right data signal needed for I2S

from the SPI stream transmitted by the processor. The final block is the OPA2134 audio

amplifier that is configured as a low-pass filter. The bulk of the discrete components are

part of this low-pass filter.

RS232

SC

I2S PIC18F

2580

20MHz

5 MIPS

PIC24F

J64GA002

32MHz

16 MIPS

PCM

1755

CAN

I/F

Micro

SD

OPA

2134

Switch

Inputs

LR_gen

+5V +5V

+3.3V

+5V

SC = 512*fs = 16MHz

fs = 31250 samples/sec.

 - 3 - Version 0.9

Bandwidth Table

Interface Bandwidth

Required

Notes

I2S 125 KB/sec Exact bandwidth determined by two 16-bit sound

values every 32 us

SPI/MicroSD 46,875 Bytes/sec Three channels of 4-bit ADPCM data. Additional

bandwidth will be needed for file system operations.

Theoretical max available is 49.2 KB/sec.

Command very low, ~ 360

bits/second

Typically about one command every 0.1 seconds.

Available bandwidth is 115,200 baud

I2S Interface

The Inter-Integrated Circuit Sound (I
2
S) interface is the most common interface for audio

digital-to-analog converters (DAC). It is also a very demanding interface in terms of bit

rate and timing requirements, plus it requires a continuous, un-interrupted stream of audio

data. At a sample rate of 31,250 samples, one bit of audio data must be provided every 1

microsecond. This requires that the serial clock toggles every 500 ns. This means that a

microcontroller running 16 MIPS, or 62.5 ns per instruction, must change the state of I/O

pins every 8 instructions. This does not leave enough instructions to receive and format

data without some type of hardware assist.

The following figure shows the timing of the I2S bus. For completeness, it must be

pointed out that this is not fully I2S compliant, it’s a variant called 16-bit right-justified.

The only difference is in the alignment of the LRCK signal, so this does not relax the

timing requirements.

From this figure, LRCK is the Left/Right channel clock and indicates whether the current

data is for the left or right audio channel. BCK is the bit clock; DATA is captured on the

rising edge of BCK. DATA is the audio sample, 16-bits provided with most significant

bit (MSB) first.

Although this seems like a common problem that would have been solved previously, a

significant amount of research turned up no solutions. Checking chip suppliers and

electronics retailers turned up no chips that interface a standard bus (e.g. SPI) to I2S.

 - 4 - Version 0.9

Existing designs that were found use a programmable logic device like a MAX II CPLD.

The solution invented for the PinKit Audio board relies on several special hardware

features of the Microchip PIC24F microcontrollers. The solution is described here.

The PIC24F provides an SPI mode called “Framed SPI.” It is intended to connect to

devices together with an SPI bus in a master/slave configuration. As part of this support,

the PIC24F can generate a pulse on the SS pin at the start of every SPI transfer as shown

in the following figure from the SPI section of the PIC24F family reference manual.

This SS signal is used as the clock for a 7474 positive edge triggered D flip-flow

configured as a toggle flip-flop. The RESET pin of the flip-flop is used to initialize the

flip-flop at start-up so the phase of the I2S LRCLK signal is correct.

Internal Serial Interface

The interface between the PIC18 and the PIC24F is a standard serial (RS-323 like)

UART interface at 115,200 baud. The format is 8-bits, no parity, one stop bit. Optional

jumpers are provided on the board in case there are applications that want to control this

interface directly. All audio functions are controlled through this interface.

Why serial? After looking at several options, any parallel command options required too

many microcontroller pins. SPI would be a good option, but the two available hardware

controllers are already in use on the PIC24F. Performance requirements did not justify

inventing a unique 4-bit parallel bus when a standard UART interface would work. In

the end, this also may allow additional uses for the audio board as there are many options

for driving a standard serial bus.

Serial Commands

Commands on the serial bus are 1 upper case character followed by one or more

hexadecimal digits in lower case. All commands are sent as ASCII characters. The

following table lists the available commands.

 - 5 - Version 0.9

Command Data Description

M CNN Master Volume control. Set left/right channel or both channels to

volume NN. Left: C=’0’ Right: C=’1’ Both: C=’3’ NN is in the

range of 00 to “ff”, where “ff” is maximum volume. The PCM1755

has a soft-mute function that prevents pops and clicks during volume

changes.

V CTV Track Volume control. Set left/right channel or both channel track T

attenuation to V, T is 0-2 and V is 0-f. C is the same as above. 0 is

the minimum volume and ‘f’ is the maximum volume. This

attenuation is done in software during the mixing of the three

channels of sound.

P TNNN Play sound NNN on track T

Q TNNN Queue sound NNN on track T to play next.

R TNNN Play and Repeat sound NNN on track T

K TNNN Skip forward NNN/10 seconds on track T

S T Stop playing sound on track T, stops after current sound has

completed. T is 0-2. Setting T = ‘f’ stops all tracks.

A T Abort playing sound on track T, stops immediately. T is 0-2. Setting

T = ‘f’ aborts all tracks.

Example 1: Set left and right channel volume to maximum.
Mffff

Example 2: Play sound 001 on track 1:
P1001

Return Code:

PIC24F returns “OK” when a command is successfully received. If any problem is

encountered, PIC24F returns “EN”, where N is a single character representing the type of

error
1
.

Sound file naming

Sound files are named “SNDxxx.ad4”, where “xxx” is the three hex digit value (NNN)

used in the serial commands to play the file.

For example, the sound command “P1001” will play file “SND001.ad4” on track 1.

Sound file banks

The PinKit PLAY command can address up to 256 sound files. While normally this is

adequate, a banking option is available to expand this to 3136. A bank register is

provided that expands the sound indices by one hexadecimal digit. The default value is

1
 This is optional and not currently enabled in the PinKit usage.

 - 6 - Version 0.9

0x0 which makes sound files 0x000 – 0x0FF available by default. The first 64 sound

values are automatically mapped into every bank. In other words, with bank 1 selected,

playing sound 0x3F will play sound 0x03F, but playing sound 0x40 will play sound file

0x140. The suggested use is to keep frequently used sounds in the first 64 indices and

using the bank select to switch between the banks. The following table shows the sound

index mapping.

Index Bank 0 Bank 1 Bank 2 … Bank 0xF

0-63 0x000 – 0x03F

64-

255

0x040

0x041

0x042

…

0x0FF

0x140

0x141

0x142

…

0x1FF

0x240

0x241

0x242

…

0x2FF

 0xF40

0xF41

0xF042

…

0xFFF

Sound file format

Sound files must be pre-stored on the MicroSD card in the root directory. Sub-directories

are not supported. The sound file format is raw 4-bit ADPCM per the ITU G.721

reference algorithm.

ADPCM provides a 4:1 compression in data size while maintaining very high quality

(near 16-bit) sound. Compression is not needed for storage on the MicroSD, but it lowers

the bandwidth requirements so multiple tracks can be played simultaneously.

Sound file caching

The first 64 sound files (xxx <= 0x40) have their File Allocation Table (FAT) cluster list

prefetched into the PIC24F memory. This is necessary to avoid repeated searches in the

FAT that are required to stream through multiple open files simultaneously. The cluster

list is compressed into a run-length encoded format (start + length) that is extremely

efficient for an unfragmented file structure.

Adaptive Differential Pulse Code Modulation (ADPCM)

ADPCM combines several techniques to obtain high compression ratio while maintaining

a high-quality audio result.

Audio is encoded digitally by sampling the analog waveform and recording the value at

each sample point. These samples are later used to reconstruct the original waveform for

playback. The faster the samples are taken the higher the frequencies that can be

accurately reproduced. The more resolution (bits) that is used for each sample, the more

accurately the original waveform can be reproduced. Increasing either (or both) of these

increases the amount data and the data rate that must be maintained to play back the

audio. Compact Disc (CD) audio is stored with 16-bit samples at 44.1KHz sample rate.

 - 7 - Version 0.9

Pulse Code Modulation – Each sample represents the magnitude of the waveform at that

time. Playback involves creating a pulse of that magnitude for every sample.

Differential – Since adjacent samples are typically of similar magnitude, sample size can

be reduced by only storing the difference between samples

Predictive – Sample size can be further reduced by predicting a value for the next sample

and storing the difference from the predicted sample

Adaptive – Still further savings can be realized by changing, or adapting, the step size

represented by the sample based on the previous samples

4-bit ADPCM uses all of these techniques to maximize the data quality while minimizing

data storage.

 - 8 - Version 0.9

Creating Sound Files

The basic steps to create a sound file for the audio boards are:

1. Create or copy a WAV file in PC format

2. Convert the WAV file to 16-bit mono at 31,250 samples per second

3. Extract the audio samples from the new WAV file (i.e. delete the first 44 bytes)

4. Convert the raw audio data to ADPCM

This section provides a step-by-step process to do this using a free set of tools. Windows

batch files that help automate some of these steps are available and described in the next

section.

Wavosaur audio editor, http://www.wavosaur.com/

Sox Sound Exchange, http://sourceforge.net/projects/sox/

PCspeech, provided with support files for Microchip Application Note 643, but patched

some data types to get correct results.

Step 1 & 2

Start Wavosaur,

Open the wav file to convert.

Process -> Resample, set sample rate to 31250

Process -> Convert to Mono -> Mix all channels

Process -> Normalize -> 0 db

File -> Save As -> sndxxx.wav, where “xxx” is the name you choose

Note that Wavosaur can also record PC sounds by pressing the [record] button. After

recording, highlight the section of audio you want to save:

Edit -> Copy

Edit -> Other Paste -> Paste into new file

Step 3

At windows command prompt:

sox -s -2 -L -c 1 -r 31250 snd001.wav snd001.raw

Step 4

At windows command prompt:

pcspeech e snd001.raw snd001.ad4

Note: sox can create .ima files, which should be equivalent to the G.721 ADPCM files

generated by pcspeech, but the produced file is different. There may be more options to

correct this, but it would need to be investigated.

The generated file can be checked by converting it back to a WAV file.

1. pcspeech d snd001.ad4 snd001new.raw

2. sox -s -2 -L -c 1 -r 31250 snd001new.wav snd001new.wav

The new WAV file should be identical to the original snd001.wav file.

 - 9 - Version 0.9

Sound Utilities – One Time Setup

The sound utilities run from a Windows command line. Create a working directory and

unpack the contents of pk_tools.zip into the directory. Download Wavosaur from

http://www.wavosaur.com/download/files/Wavosaur.1.0.5.0(en).zip This can be

installed in the same directory.

Windows Batch Files

Two batch files help with the conversion. Change directory into the directory you

created prior to running the following commands.

To convert a wave file to AD4 format required by the audio card, use:
C:\> pk_convert FILE.wav

where FILE is the name of the wave file, e.g. SND001

Edit the copyfiles.bat file to run the specific copy commands for all the sound files

needed for your application.

After the AD4 files are created, plug the MicroSD card into a USB port and run:
C:\> copyfiles

This will prompt for the drive letter of the MicroSD card. The card will be formatted and

the sound files will be copied onto the card.

 - 10 - Version 0.9

PCB Layout

 - 11 - Version 0.9

Schematics (1 of 2)

 - 12 - Version 0.9

Schematics (2 of 2)

 - 13 - Version 0.9

Bill of Materials

Reference Component Part # Qty
C1, C9, C12, C13, C14 10 uF, 50V, 105C (0.098”) 493-3281-ND 5

C2, C3, C10, C11, C23 0.1 uF (0.1”) 399-4264-ND 5

C23 0.015 uF (0.1”) C320C153K5R5TA 1

C4, C5 20 pf (0.098”) 490-3703-ND 2

C7, C8 10uF, Bipolar UES1V100MEM-ND 2

C15, C18, C19, C22 680 pF 399-4191-ND 4

C16, C20 1500 pF 399-4269-ND 2

C17, C21 470 pF 399-4182-ND 2

D1 LED, red T-1 67-1066-ND 1

D2 1N4004 1N4004FSCT 1

J1 0.156” Header, 6 pin WM4624-ND 1

J2 RCA Jack, dual, red/white RCJ-2123 1

J3, J4 (ICSP – optional) 0.100” rt angle header, 6 pin WM4104-ND 2

J5 RJ45 1x2 w/LEDs RJHSE-5381-02-ND 1

J6 0.100” Header, 6 pin WM4204-ND 1

J7 MicroSD Socket Kyocera 5138 1

R1 470 ohm, 1/8 Watt CF18JT470RCT-ND 1

R2, R3, R9-R12, R15,

R16, R17

10K ohm, 1/8 Watt CF18JT10K0CT-ND 9

R4, R21-R24 1K ohm, 1/8 Watt CF18JT1K00CT-ND 5

R5-R8 22 ohm, 1/8 Watt CF18JT22R0CT-ND 4

R13, R14 100K ohm, 1/8 Watt CF18JT100KCT-ND 2

RN1 820 ohm RES – 6 SIP 4606X-1-821LF-ND 1

RN2 56K ohm RES – 6 SIP 4606X-101-563LF 1

SW1 4-pos DIP Switch 450-1364-ND 1

U1 PIC18F2580 PIC18F2580-I/SP-ND 1

U2 MCP2551 CAN HI-SPD 8-DIP MCP2551-I/P-ND 1

U3 ESD Protection Array – ST Micro

ESDA6V1-5SC6 (SOT-23-6)

497-7747-1-ND 1

U4 PIC24FJ64GA001 (DIP-28) PIC24FJ64GA002-E/SP-ND 1

U5 PCM1755DBQ (SSOP-16)

296-16653-5-ND 1

U6 OPA2134 (PDIP-8) OPA2134PA-ND 1

U7 LD1117V33, 3.3V regulator 497-1491-5-ND 1

U8 74HCTS74
2
 (SOIC-14) 1

X1 20 Mhz crystal 300-8507-ND 1

PCB PCB, 3.8 x 2.5” PK_Audio_v1p1 1

2
 SSOP-14 on pcb rev 1.0

 - 14 - Version 0.9

Pin Assignments

Pin Description Notes

J1-1 Ground

J1-2 +5V Card Logic & Switches

J1-3 +12V Lamps (Unused)

J1-4 NC

J1-5 Ground

J1-6 +24V Coils (Unused)

J2-1 Ground

J2-2 Channel A Line out

J2-3 Ground

J2-4 Channel B Line out

J3 ICSP PIC24F programming I/F,

PicKit2 compatible

J4 ICSP PIC18 programming I/F,

PicKit2 compatible

J5A RJ-45 PinCAN

J5B RJ-45 PinCAN

Errata

PK_Audio Revision 1.0 Errata

Rev 1.0 of the PK_Audio board is fully functional, but the following problems are

corrected in Rev 1.1.

1. Missing +5V connection from J5 to bulk of supply distribution. A jumper wire

must be added from J4 pin 2 to U2 pin 3 to support PinCAN powering of audio

board.

2. Solder mask on side support tabs of J7 (MicroSD) socket removed. On 1.0 these

must be scraped before mounting the socket.

3. Solder tabs for pins extended to make it easier to solder manually.

4. Change U8 from SSOP-14 to SOIC-14 to make it easier to solder manually.

5. Increase spacing between C12 and U7

6. Increase spacing between C8 and C9

 - 15 - Version 0.9

Engineering Notes:

4-bit ADPCM = 2 samples/byte

31250 samples/sec * bytes/(2 samples) = 15625 bytes / sec * 3 channels = 46875

bytes/sec

SparkFun Electronics makes an “RS232 Shifter SMD”, sku: PRT-00449, that can

interface standard RS-232 voltage levels to the 3.3V levels used on PK-Audio.

Schematics are provided if you want to build one, but theirs is reasonably priced.

http://www.sparkfun.com/products/449

Interface Levels:

The PinKit Audio board is powered by 5V DC, but an on-board regulator is used to

power the PIC24 and MicroSD card at 3.3V. The following table summarizes the I/O

voltage levels to check for proper signaling between the various components.

Parameter PIC18
3
(5V) PIC24F(3.3V) 74HCT(5V) PCM1755(5V)

Vil 0.8V 0.67 V (0.2*vdd) 0.8V 0.8V

Vih 2.0V 2.64 V (0.8*vdd) 2.0V 2.0V

Vol ≤0.4V ≤ 0.4 V ≤0.4V ≤0.4V

Voh ≥2.4V ≥ 2.75 V ≥2.4V ≥2.4V

f(max) 40MHz 32MHz 22MHz 32MHz?

References

1. I2S Bus Specification, Phillips Semiconductors, June 5, 1996 Revision.

2. Connecting the Atmel ARM-based Serial Synchronous Controller (SSC) to an

I2S-compatible Serial Bus

http://atmel.com/dyn/resources/prod_documents/doc6020.pdf

3. SPI to I2S Using MAX II CPLDs http://www.altera.com/literature/an/an487.pdf

4. Interfacing an I2S Device to an MSP430 Device

http://www.ti.com/lit/an/slaa449a/slaa449a.pdf

5. SD Specifications Part 1, Physical Layer Simplified Specification Version 2.00,

September 25, 2006

6. PIC24F Family Reference Manual

This is only available as a set of individual section documents. Reference online

3
 PIC18F2580 datasheet, section 28.3

 - 16 - Version 0.9

by searching for “PIC24F Family Reference Manual” on www.microchip.com.

Or for more direct access, web search for “PIC24F Family Reference Manual”.

7. “PIC24FJ64GA004 Family Data Sheet”, Microchip, DS39881D, 2010

8. “Adaptive Differential Pulse Code Modulation using PICmicro™

Microcontrollers”, Application note AN643, Microchip,

http://ww1.microchip.com/downloads/en/AppNotes/00643c.pdf

